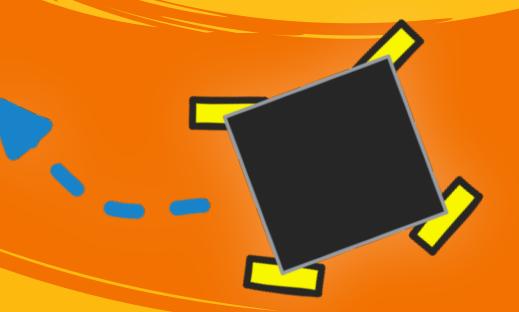
Mars Rover Navigation

The goal of this project is to improve the autonomous navigation system for the FHNW Mars Rover to compete at the European Rover Challenge 2025.

The navigation system is used for the navigation task, where a given set of waypoints needs to be visited by the rover as autonomously as possible.

① A 3D model (left) of the environment is used to create a **height map** (below) once. That's an image storing elevation data in each pixel.

② The height map is used to create a cost map. The cost map assigns a difficulty to each area based on the slope and the newly added roughness of the terrain. Blue areas are safer, red and pink ones are more difficult. Previously, only the slope was used.


6 The data from the Lidar (in form of a point cloud) is used to update the height map with the new elevation data. This triggers the entire process again and allows the rover to avoid obstacles.

The Lidar sensor (red circle) provides depth information about the environment using lasers (similar to radar).

③ The cost map is used to
calculate the "best"
(short and safe) path
visiting all waypoints.
The sharp path of straight
lines (blue dashes) is now
converted to a path of
arcs (black line). This
allows the rover to drive
smooth curves.

© When the rover moves, the Lidar scans the new environment. The localization system updates the current estimated position. The blue blob (above) represents an obstacle detected by the Lidar.

4 The path is used together with the current (estimated) location to calculate the drive command. This step was updated to handle the new arcs. The rover needs to be oriented in the right direction before it can follow an arc.

Studiengang, Semester:
Projekttitel:
Diplomand:
Auftraggeber:
Experte:

Dozenten:

Informatik, 25fs
Mars Rover Navigation
Miro Albrecht
FHNW Rover Team
Markus Bracher
Prof. Dr. Christoph Stamm, Sandro Covo

www.fhnw.ch